Add like
Add dislike
Add to saved papers

A Multivariate Method for Estimating and comparing whole brain functional connectomes from fMRI and PET data.

Positron emission tomography (PET) and magnetic resonance imaging (MRI) are two commonly used imaging techniques to visualize brain function. The use of inter-network covariation (a functional connectome) is a widely used approach to infer links among different brain networks. While whole brain resting fMRI connectomes are widely used, PET data has mostly been analyzed using a few regions of interest. There has been much less work estimating PET spatial networks and almost no work on their connectivity (covariation) in the context of a whole brain data-driven connectome, nor have there been direct comparisons between whole brain PET and fMRI connectomes. Here we present an approach to leverage spatially constrained ICA to compute an estimate of the PET connectome. Results reveal highly modularized connectome patterns that are complementary to that identified from resting fMRI. Similarly, we were able to identify comparable resting networks from a PiB PET scan that can be directly compared to networks in rest fMRI data and results reveal similar, but not identical, network spatial patterns, with the PET networks being slightly smoother and, in some cases, showing variations in subnodes. The resulting networks, decomposed into spatial maps and subject expressions (loading parameters) linked to resting fMRI provide a new way to evaluate the complementary information in PET and fMRI and open up new possibilities for biomarker development.Clinical Relevance-This study analyzes the whole-brain PET and fMRI connectomes, capturing the complementary information from both imaging modalities, thereby introducing a new scope for biomarker development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app