Add like
Add dislike
Add to saved papers

Nondestructive Nonlinear Optical Microscopy Revealed the Blackening Mechanism of Ancient Chinese Jades.

Jade is most valued in Chinese culture since ancient times. For unearthed jade artifacts, the alteration color resulting from weathering effects and human activities provides information for cultural heritage conservation, archaeology, and history. Currently, the noninvasive 3-dimensional characterization of jade artifacts with high chemical and spatial resolution remains challenging. In this work, we applied femtosecond pump-probe microscopy and second harmonic generation microscopy techniques to study the black alteration of an ancient jade artifact of the late Spring and Autumn period (546 to 476 BC). The direct cause of the "mercury alteration" phenomena was discovered to be the conversion of metacinnabar from buried cinnabar in the tomb. Furthermore, a 3-dimensional optical reconstruction of the black alteration was achieved, providing a high-resolution method for analyzing the blackening mechanism without the need of sample damage. Our approach opens up new opportunities to extract microscopic spatiochemical information for a broad range of alteration colors in jade artifacts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app