Add like
Add dislike
Add to saved papers

High-resolution genetic linkage map and height-related QTLs in an oil palm ( Elaeis guineensis ) family planted across multiple sites.

UNLABELLED: A refined SNP array containing 92,459 probes was developed and applied for chromosome scanning, construction of a high-density genetic linkage map and QTL analysis in a selfed Nigerian oil palm family (T128). Genotyping of the T128 mapping family generated 76,447 good quality SNPs for detailed scanning of aberration and homozygosity in the individual pseudo-chromosomes. Of them, 25,364 polymorphic SNPs were used for linkage analysis resulting in an 84.4% mapping rate. A total of 21,413 SNPs were mapped into 16 linkage groups (LGs), covering a total map length of 1364.5 cM. This genetic map is 16X denser than the previous version used to establish pseudo-chromosomes of the oil palm reference genome published in 2013. The QTLs associated with height, height increment and rachis length were identified in LGs TT05, 06, 08, 15 and 16. The present QTLs as well as those published previously were tagged to the reference genome to determine their chromosomal locations. Almost all the QTLs identified in this study were either close to or co-located with those reported in other populations. Determining the QTL position on chromosomes was also helpful in mining for the underlying candidate genes. In total, 55 putative genes and transcription factors involved in the biosynthesis, conjugation and signalling of the major phytohormones, especially for gibberellins and cell wall morphogenesis were found to be present in the identified genomic QTL regions, and their potential roles in plant dwarfism are discussed.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-023-01360-2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app