Add like
Add dislike
Add to saved papers

Remarkably fast and reusable photocatalysis by UV annealed Cu 2 O-SnO 2 p-n heterojunction.

Chemosphere 2023 November 25
Powdered micro- or nano-particles photocatalyst has separation and recovery challenges, which may create a second pollution to environment and harmful to animals. To address those issues, SnO2 , Cu2 O and Cu2 O-SnO2 p-n heterojunction thin films are formed on glass substrates using efficient co-sputtering method that is commonly employed for large-area high-definition display panel. Using first-order kinetics, 100 °C ultraviolet (UV) annealed Cu2 O-SnO2 p-n heterojunction shows the superb fast degradation rate constant of 0.21 and 0.16 min-1 for methylene blue (MB) and methyl orange (MO) organic dyes, respectively, as photogenerated electron-hole pairs is increased. Record best degradation rate constants of 0.15 and 0.08 min-1 for respective MB and MO are still achieved even after four repeated cycles. The 100 °C UV annealed Cu2 O-SnO2 film catalyst displays greater degradation efficiency in both dyes, reaching 100% degradation at room temperature after 30 and 35 min of illumination for MB and MO respectively. The scavenger experiments show that hydroxyl (· OH) and superoxide radicals (· O2 - ) are the major active species in the degradation of dye. The 100 °C UV annealed Cu2 O-SnO2 film catalyst showed stability as well as reusability towards the dye degradation. As a result, the present work delivers an effective way to enhance the photocatalytic performance and also an easy recovery of the catalyst, which can be explored for various emerging pollutants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app