Add like
Add dislike
Add to saved papers

Shear bond strength of orthodontic brackets bonded to high-translucent dental zirconia with different surface treatments: An in vitro study.

PURPOSE: The objective of this study was to compare the shear bond strengths of orthodontic brackets bonded to translucent dental zirconia samples which are anatomically accurate and treated with various surface treatments.

METHODS: This in vitro study included 156 samples from 3 brands of high-translucent zirconia split into a control group and 4 surface treatment groups: 9.6% hydrofluoric acid etching, 50-micron aluminium oxide particle air abrasion, and 30-micron tribochemical silica coating (TBS) particle air abrasion with and without silane application. After surface treatment, all groups were primed with a 10-MDP primer and bonded to metal orthodontic brackets. Shear bond strength (SBS) was tested and results were compared between all groups. Data analysis consisted of a balanced two-factor factorial ANOVA, a Shapiro-Wilks test, and a non-parametric permutation test. The significance level was set at 0.05.

RESULTS: Among all surface treatments, aluminium oxide particle abrasion produced significantly higher SBS (P≤0.002). Lava™ Plus zirconia samples had significantly higher SBS than Cercon® samples (P<0.0001). TBS surface treatment produced significantly higher SBS on Lava™ Plus samples than it did on the other zirconia brands (P=0.032).

CONCLUSIONS: This study indicated that mechanical abrasion using aluminium oxide in combination with a 10-MDP primer creates a higher SBS to high-translucent zirconia than the bond created by tribochemical silica coating. Also, there was no significant difference in ARI regardless of zirconia brand or surface preparation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app