Journal Article
Review
Add like
Add dislike
Add to saved papers

Transient receptor potential vanilloid type 1: cardioprotective effects in diabetic models.

Channels 2023 December
Cardiovascular disease, especially heart failure (HF) is the leading cause of death in patients with diabetes. Individuals with diabetes are prone to a special type of cardiomyopathy called diabetic cardiomyopathy (DCM), which cannot be explained by heart diseases such as hypertension or coronary artery disease, and can contribute to HF. Unfortunately, the current treatment strategy for diabetes-related cardiovascular complications is mainly to control blood glucose levels; nonetheless, the improvement of cardiac structure and function is not ideal. The transient receptor potential cation channel subfamily V member 1 (TRPV1), a nonselective cation channel, has been shown to be universally expressed in the cardiovascular system. Increasing evidence has shown that the activation of TRPV1 channel has a potential protective influence on the cardiovascular system. Numerous studies show that activating TRPV1 channels can improve the occurrence and progression of diabetes-related complications, including cardiomyopathy; however, the specific mechanisms and effects are unclear. In this review, we summarize that TRPV1 channel activation plays a protective role in the heart of diabetic models from oxidation/nitrification stress, mitochondrial function, endothelial function, inflammation, and cardiac energy metabolism to inhibit the occurrence and progression of DCM. Therefore, TRPV1 may become a latent target for the prevention and treatment of diabetes-induced cardiovascular complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app