Add like
Add dislike
Add to saved papers

Characterization of Molecular Tweezer Binding on α-Synuclein with Native Top-Down Mass Spectrometry and Ion Mobility-Mass Spectrometry Reveals a Mechanism for Aggregation Inhibition.

Parkinson's disease, a neurodegenerative disease that affects 15 million people worldwide, is characterized by deposition of α-synuclein into Lewy Bodies in brain neurons. Although this disease is prevalent worldwide, a therapy or cure has yet to be found. Several small compounds have been reported to disrupt fibril formation. Among these compounds is a molecular tweezer known as CLR01 that targets lysine and arginine residues. This study aims to characterize how CLR01 interacts with various proteoforms of α-synuclein and how the structure of α-synuclein is subsequently altered. Native mass spectrometry (nMS) measurements of α-synuclein/CLR01 complexes reveal that multiple CLR01 molecules can bind to α-synuclein proteoforms such as α-synuclein phosphorylated at Ser-129 and α-synuclein bound with copper and manganese ions. The binding of one CLR01 molecule shifts the ability for α-synuclein to bind other ligands. Electron capture dissociation (ECD) with Fourier transform-ion cyclotron resonance (FT-ICR) top-down (TD) mass spectrometry of α-synuclein/CLR01 complexes pinpoints the locations of the modifications on each proteoform and reveals that CLR01 binds to the N-terminal region of α-synuclein. CLR01 binding compacts the gas-phase structure of α-synuclein, as shown by ion mobility-mass spectrometry (IM-MS). These data suggest that when multiple CLR01 molecules bind, the N-terminus of α-synuclein shifts toward a more compact state. This compaction suggests a mechanism for CLR01 halting the formation of oligomers and fibrils involved in many neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app