Add like
Add dislike
Add to saved papers

SEM: sized-based expectation maximization for characterizing nucleosome positions and subtypes.

bioRxiv 2023 October 21
Genome-wide nucleosome profiles are predominantly characterized using MNase-seq, which involves extensive MNase digestion and size selection to enrich for mono-nucleosome-sized fragments. Most available MNase-seq analysis packages assume that nucleosomes uniformly protect 147bp DNA fragments. However, some nucleosomes with atypical histone or chemical compositions protect shorter lengths of DNA. The rigid assumptions imposed by current nucleosome analysis packages ignore variation in nucleosome lengths, potentially blinding investigators to regulatory roles played by atypical nucleosomes. To enable the characterization of different nucleosome types from MNase-seq data, we introduce the Size-based Expectation Maximization (SEM) nucleosome calling package. SEM employs a hierarchical Gaussian mixture model to estimate the positions and subtype identity of nucleosomes from MNase-seq fragments. Nucleosome subtypes are automatically identified based on the distribution of protected DNA fragment lengths at nucleosome positions. Benchmark analysis indicates that SEM is on par with existing packages in terms of standard nucleosome-calling accuracy metrics, while uniquely providing the ability to characterize nucleosome subtype identities. Using SEM on a low-dose MNase H2B MNase-ChIP-seq dataset from mouse embryonic stem cells, we identified three nucleosome types: short-fragment nucleosomes, canonical nucleosomes, and dinucleosomes. The short-fragment nucleosomes can be divided further into two subtypes based on their chromatin accessibility. Interestingly, the subset of short-fragment nucleosomes in accessible regions exhibit high MNase sensitivity and display distribution patterns around transcription start sites (TSSs) and CTCF peaks, similar to the previously reported "fragile nucleosomes". These SEM-defined accessible short-fragment nucleosomes are found not just in promoters, but also in enhancers and other regulatory regions. Additional investigations reveal their co-localization with the chromatin remodelers Chd6, Chd8, and Ep400. In summary, SEM provides an effective platform for distinguishing various nucleosome subtypes, paving the way for future exploration of non-standard nucleosomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app