Add like
Add dislike
Add to saved papers

Biological Synthesis of Copper Nanoparticles Using Edible Plant Allium monanthum : Characterization of Antibacterial, Antioxidant, and Anti-Inflammatory Properties Using In Silico Molecular Docking Analysis.

Materials 2023 October 13
This study prepared copper nanoparticles using an edible leaf extract from A. monanthum (AM-CuNPs) via eco-friendly green synthesis techniques. The size, shape, crystalline nature and functional groups of the synthesized AM-CuNP particles were analyzed by a UV-VIS spectrophotometer and SEM, EDX, TEM, XRD and FT-IR instrumentation. The synthesized AM-CuNPs had spherical shapes with sizes in the range of 30-80 nm and were crystalline in nature. In addition, the AM-CuNPs were synthesized using various bioactive sources, including flavonoids, phenolic acids, alkaloids and sugars that were present in an aqueous broth of A. monanthum . Furthermore, the AM-CuNPs possessed good antibacterial properties against selected major disease-causing pathogenic bacteria, such as E. coli , Salmonella typhi , Pseudomonas aeruginosa and Staphylococcus aureus . The antioxidant activity of AM-CuNPs exhibited potent free radical scavenging activities in DPPH, ABTS and H2 O2 radical assays. In addition, in silico analysis of the AM-CuNPs was performed, including ADME prediction, and molecular simulation docking on the secondary metabolites identified in the edible plant extract was used to evaluate their anti-inflammatory applications. In particular, the molecular docking scores showed that alliin, apigenin, isorhamnetin, luteolin and myricetin have sufficient binding energy and top values as inhibitors of the protein target involved in the inflammation signaling cascade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app