Add like
Add dislike
Add to saved papers

Bispecific antibody shuttles targeting CD98hc mediate efficient and long-lived brain delivery of IgGs.

Cell Chemical Biology 2023 October 11
The inability of antibodies to penetrate the blood-brain barrier (BBB) is a key limitation to their use in diverse applications. One promising strategy is to deliver IgGs using a bispecific BBB shuttle, which involves fusing an IgG to a second affinity ligand that engages a cerebrovascular endothelial target and facilitates transport across the BBB. Nearly all prior efforts have focused on shuttles that target transferrin receptor (TfR-1) despite inherent delivery and safety challenges. Here, we report bispecific antibody shuttles that engage CD98hc, the heavy chain of the large neutral amino acid transporter (LAT1), and efficiently transport IgGs into the brain. Notably, CD98hc shuttles lead to much longer-lived brain retention of IgGs than TfR-1 shuttles while enabling more specific targeting due to limited CD98hc engagement in the brain parenchyma, which we demonstrate for IgGs that either agonize a neuronal receptor (TrkB) or target other endogenous cell-surface proteins on neurons and astrocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app