Add like
Add dislike
Add to saved papers

Autism candidate gene rbm-26 ( RBM26/27 ) regulates MALSU-1 to protect against mitochondrial dysfunction during axon development.

bioRxiv 2023 October 15
Mitochondrial dysfunction is thought to be a key component of neurodevelopmental disorders such as autism, intellectual disability, and ADHD. However, little is known about the molecular mechanisms that protect against mitochondrial dysfunction during neurodevelopment. Here, we address this question through the investigation of rbm-26 , the C. elegans ortholog of the RBM27 autism candidate gene, which encodes an RNA-binding protein whose role in neurons is unknown. We report that RBM-26 (RBM26/27) protects against neurodevelopmental defects by negatively regulating expression of the MALSU-1 mitoribosomal assembly factor. Autism-associated missense variants in RBM-26 cause a sharp decrease in RBM-26 protein expression along with neurodevelopmental defects, including errors in axon targeting and axon degeneration. Using an unbiased screen, we identified the mRNA for the MALSU-1 mitoribosomal assembly factor as a binding partner for RBM-26. RBM-26 negatively regulates the expression of malsu-1 mRNA and MALSU-1 protein, and genetic analysis indicates that this interaction is required to protect against neurodevelopmental defects. Moreover, biochemical evidence suggests that excess levels of MALSU-1 disrupt the biogenesis of mitoribosomes in rbm-26 mutants. These observations reveal a mechanism that can protect mitochochondrial function to prevent neurodevelopmental defects and suggest that disruptions in this process can cause neurodevelopmental disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app