Add like
Add dislike
Add to saved papers

Root litter quality drives the dynamic of native mineral-associated organic carbon in a temperate agricultural soil.

BACKGROUND AND AIMS: Understanding the fate and residence time of organic matter added to soils, and its effect on native soil organic carbon (SOC) mineralisation is key for developing efficient SOC sequestration strategies. Here, the effect of litter quality, particularly the carbon-to-nitrogen (C:N) ratio, on the dynamics of particulate (POC) and mineral-associated organic carbon (MAOC) were studied.

METHODS: In a two-year incubation experiment, root litter samples of the C4-grass Miscanthus with four different C:N ratios ranging from 50 to 124 were added to a loamy agricultural topsoil. In an additional treatment, ammonium nitrate was added to the C:N 124 litter to match the C:N 50 litter input ratio. Soils were size-fractionated after 6, 12 and 24 months and δ13 C was measured to determine the proportion of new and native POC and MAOC. Litter quality was further assessed by mid-infrared spectroscopy and compound peak analysis.

RESULTS: Litter quality strongly affected SOC dynamics, with total SOC losses of 42.5 ± 3.0% in the C:N 50 treatment and 48.9 ± 3.0% in the C:N 124 treatment after 24 months. Largest treatment effects occurred in mineralisation of native MAOC, which was strongly primed by litter addition. The N amendment in the C:N 124 treatment did not alleviate this potential N mining flux.

CONCLUSION: Litter quality plays a major role in overall SOC dynamics, and priming for N mining from the MAOC pool could be a dominant mechanism. However, adding N did not compensate for poor litter quality, highlighting the role of litter quality beyond stoichiometric imbalances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app