Add like
Add dislike
Add to saved papers

Cobalt-catalyzed alkene hydrogenation by reductive turnover.

Earth abundant metal catalysts hold advantages in cost, environmental burden and chemoselectivity over precious metal catalysts. Differences in reactivity for a given metal center result from ligand field strength, which can promote reaction through either open- or closed-shell carbon intermediates. Herein we report a simple protocol for cobalt-catalyzed alkene reduction. Instead of using an oxidative turnover mechanism that requires stoichiometric hydride, we find a reductive turnover mechanism that requires stoichiometric proton. The reaction mechanism appears to involve coordination and hydrocobaltation of terminal alkenes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app