Add like
Add dislike
Add to saved papers

Influence of Particle Size on the Mechanical Performance and Sintering Quality of Peanut Husk Powder/PES Composites Fabricated through Selective Laser Sintering.

Polymers 2023 September 29
This study intends to enhance the mechanical strength of wood-plastic composite selective laser sintering (SLS) parts by using a sustainable composite, peanut husk powder (PHP)/poly ether sulfone (PES) (PHPC). The study aims to address agricultural waste pollution by encouraging the eco-friendly utilization of such waste in SLS technology. To ensure the sintering quality and mechanical properties and prevent deformation and warping during sintering, the thermo-physical properties of PHP and PES powders were analyzed to determine a suitable preheating temperature for PHPC. Single-layer sintering tests were conducted to assess the formability of PHPC specimens with varying PHP particle sizes. The study showed the effects of different PHP particle sizes on the mechanical performance of PHPC parts. The evaluation covered various aspects of PHPC SLS parts, including mechanical strength, density, residual ash content, dimensional accuracy (DA), and surface roughness, with different PHP particle sizes. The mechanical analysis showed that PHPC parts made from PHP particles of ≤0.125 mm were the strongest. Specifically, the density bending strength, residual ash content, tensile, and impact strength were measured as 1.1825 g/cm3 , 14.1 MPa, 1.2%, 6.076 MPa, and 2.12 kJ/cm2 , respectively. Notably, these parameters showed significant improvement after the wax infiltration treatment. SEM was used to examine the PHP and PES powder particles, PHPC specimen microstructure, and PHPC SLS parts before and after the mechanical tests and waxing. Consequently, SEM analysis wholly confirmed the mechanical test results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app