Add like
Add dislike
Add to saved papers

Immuno-metabolic signaling in leishmaniasis: insights gained from mathematical modeling.

MOTIVATION: Leishmaniasis is a global concern especially in underdeveloped and developing subtropical and tropical regions. The extent of infectivity in host is majorly dependent on functional polarization of macrophages. Classically activated M1 macrophage can eliminate parasite through production of iNOS and alternatively activated M2 macrophages can promote parasite growth through by providing shelter and nutrients to parasite. The biological processes involved in immune signaling and metabolism of host and parasite might be responsible for deciding fate of parasite.

RESULTS: Using systems biology approach, we constructed two mathematical models and inter-regulatory immune-metabolic networks of M1 and M2 state, through which we identified crucial components that are associated with these phenotypes. We also demonstrated how parasite may modulate M1 phenotype for its growth and proliferation and transition to M2 state. Through our previous findings as well as from recent findings we could identify SHP-1 as a key component in regulating the immune-metabolic characterization of M2 macrophage. By targeting SHP-1 at cellular level, it might be possible to modulate immuno-metabolic mechanism and thereby control parasite survival.

AVAILABILITY AND IMPLEMENTATION: Mathematical modeling is implemented as a workflow and the models are deposited in BioModel database. FactoMineR is available at: https://github.com/cran/FactoMineR/tree/master.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app