Add like
Add dislike
Add to saved papers

Generating High Spatial Resolution Exposure Estimates from Sparse Regulatory Monitoring Data.

Atmospheric Environment 2023 November 16
Random Forest algorithms have extensively been used to estimate ambient air pollutant concentrations. However, the accuracy of model-predicted estimates can suffer from extrapolation problems associated with limited measurement data to train the machine learning algorithms. In this study, we developed and evaluated two approaches, incorporating low-cost sensor data, that enhanced the extrapolating ability of random-forest models in areas with sparse monitoring data. Rochester, NY is the area of a pregnancy-cohort study. Daily PM2.5 concentrations from the NAMS/SLAMS sites were obtained and used as the response variable in the model, with satellite data, meteorological, and land-use variables included as predictors. To improve the base random-forest models, we used PM2.5 measurements from a pre-existing low-cost sensors network, and then conducted a two-step backward selection to gradually eliminate variables with potential emission heterogeneity from the base models. We then introduced the regression-enhanced random forest method into the model development. Finally, contemporaneous urinary 1-hydroxypyrene was used to evaluate the PM2.5 predictions generated from the two approaches. The two-step approach increased the average external validation R2 from 0.49 to 0.65, and decreased the RMSE from 3.56 μg/m3 to 2.96 μg/m3 . For the regression-enhanced random forest models, the average R2 of the external validation was 0.54, and the RMSE was 3.40 μg/m3 . We also observed significant and comparable relationships between urinary 1-hydroxypyrene levels and PM2.5 predictions from both improved models. This PM2.5 model estimation strategy could improve the extrapolating ability of random forest models in areas with sparse monitoring data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app