Add like
Add dislike
Add to saved papers

KDM2B regulates inflammation and oxidative stress of sepsis via targeting NF-κB and AP-1 pathways.

BACKGROUNDS: The kidney is an easily affected organ with sepsis which is a main underlying cause of acute kidney injury (AKI). Histone-modifying lysine-specific demethylase 2B (KDM2B) is involved in numerous pathological processes, such as cell senescence and tumor development. However, the role of KDM2B in sepsis-induced AKI is unclear.

OBJECTS: To investigate the role of KDM2B on cell viability, inflammation and oxidative stress of sepsis-associated AKI, and the involved signaling pathways.

METHODS: An AKI model in vitro was established through lipopolysaccharide (LPS)-induction in HK-2 cells. Western blots were performed to evaluate the expression of KDM2B, cyclooxygenase 2 (COX2), inducible nitric oxide synthase (iNOS), p65, c-Jun and c-Fos, as well as p65 phosphorylation. Cell viability was measured using CCK-8 kit. ELISA was performed to analyze the production of layered double hydroxide (LDH), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-18, vascular cell adhesion molecule-1 (VCAM-1), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and H2 O2 . The qPCR was used to evaluate the transcription level of TNF-α, IL-1β, IL-18, and VCAM-1.

RESULTS: KDM2B knockdown alleviated LPS-induced cytotoxicity, decreased LDH release, and improved cell viability. KDM2B knockdown reduced concentration of inflammation-related molecules including TNF-α, IL-1β, IL-18, and VCAM-1, and inhibited their transcription. Moreover, KDM2B knockdown promoted the quantity of SOD and GSH, while declined the production of MDA, H2 O2 , COX2, and iNOS. Further, KDM2B played a role in LPS-induced HK-2 cell injury by activating nuclear factor κB (NF-κB) and activator protein 1 (AP-1) pathways.

CONCLUSION: KDM2B knockdown reduced cytotoxicity, inflammation and oxidative stress in LPS-induced AKI via inhibiting NF-κB and AP-1 pathways, indicating KDM2B may be a promising therapeutic target for the treatment of sepsis-associated AKI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app