Add like
Add dislike
Add to saved papers

Effects of Repetitive Transcranial Magnetic Stimulation on Pallidum GABAergic Neurons and Motor Function in Rat Models of Kernicterus.

Brain Sciences 2023 August 29
Kernicterus is a serious complication of hyperbilirubinemia, caused by neuronal injury due to excessive unconjugated bilirubin (UCB) in specific brain areas. This injury induced by this accumulation in the globus pallidus can induce severe motor dysfunction. Repetitive transcranial magnetic stimulation (rTMS) has shown neuroprotective effects in various neurological diseases. This study aimed to investigate the effects of rTMS on pallidal nerve damage and motor dysfunction in a rat model of kernicterus. Rats were divided into a sham group (n = 16), a model group (bilirubin with sham rTMS; n = 16) and an rTMS group (bilirubin with rTMS; n = 16). High-frequency rTMS (10 Hz) was applied starting from 24 h postmodeling for 7 days. The rotarod test, western blotting and immunohistochemical staining were performed to measure motor function and protein expression levels. The rTMS mitigated the negative effects of UCB on the general health of kernicterus-model rats and improved their growth and development. Furthermore, the rTMS alleviated UCB-induced motor dysfunction and increased the expression of GABAergic neuronal marker GAD67 in the globus pallidus. Notably, it also inhibited apoptosis-related protein caspase-3 activation. In conclusion, rTMS could alleviate motor dysfunction by inhibiting apoptosis and increasing globus pallidus GAD67 in kernicterus rat models, indicating that it may be a promising treatment for kernicterus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app