Add like
Add dislike
Add to saved papers

Sucrose substitution in cake systems is not a piece of cake.

NPJ science of food. 2023 September 28
Successful sucrose replacement in cake systems requires thorough understanding of its functionality. Time-domain 1 H NMR showed that water in the viscous aqueous phase isolated from cake batter by ultracentrifugation [i.e. the batter liquor (BL)] exhibits low mobility by its low T2 relaxation time (T2,D RT). This is due to its interactions with sucrose or sucrose replacers. The T2,D RT itself is positively related with the effective volumetric hydrogen bond density of sucrose or sucrose replacers. Sucrose additionally co-determines the quantity and viscosity of cake BL and thereby how much air the batter contains at the end of mixing. Like sucrose, maltitol and oligofructose provide adequate volumes of BL with low water mobility and thus sufficient air in the batter, while the rather insoluble mannitol and inulin do not. Differential scanning calorimetry and rapid viscosity analysis revealed, however, that, in contrast to sucrose and maltitol, oligofructose fails to provide appropriate timings of starch gelatinisation and protein denaturation, resulting in poor cake texture. The shortcomings of mannitol and oligofructose in terms of respectively ensuring appropriate gas content in batter and biopolymer transitions during baking can be overcome by using mixtures thereof. This work shows that successful sucrose substitutes or substitute mixtures must provide sufficient BL with low water mobility and ensure appropriate timings of starch and protein biopolymer transitions during baking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app