Add like
Add dislike
Add to saved papers

High-Pressure Synthesis of Cubic ZnO and Its Solid Solutions with MgO Doped with Li, Na, and K.

Materials 2023 July 30
The possibility of doping ZnO in its metastable rock salt structure with Li, Na, and K intended to act as acceptor dopants was investigated. For the first time, Mgx Zn1-x O alloys and pure ZnO with a rock salt structure doped with Li, Na, and K metals was obtained by high-pressure synthesis from pure oxides with the addition of carbonates or acetates of the corresponding metals as dopant sources. Successful stabilization of the metastable rock salt structure and phase purity were confirmed by X-ray diffraction. Transmission electron microscopy was used to study the particle size of nanocrystalline precursors, while the presence of Li, Na, and K metals in rock salt ZnO was detected by electron energy-loss spectroscopy and X-ray photoelectron spectroscopy in Mgx Zn1-x O alloys. Electron paramagnetic resonance measurements revealed the acceptor behavior of Li, Na, and K dopants based on the influence of the latter on native defects and natural impurities in ZnO-MgO alloys. In addition, diffuse reflectance spectroscopy was used to derive band gaps of quenched rock salt ZnO and its alloys with MgO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app