Add like
Add dislike
Add to saved papers

Prediction of amyloid positron emission tomography positivity using multiple regression analysis of quantitative susceptibility mapping.

PURPOSE: To develop a method for predicting amyloid positron emission tomography (PET) positivity based on multiple regression analysis of quantitative susceptibility mapping (QSM).

MATERIALS AND METHODS: This prospective study included 39 patients with suspected dementia from four centers. QSM images were obtained through a 3-T, three-dimensional radiofrequency-spoiled gradient-echo sequence with multiple echoes. The cortical standard uptake value ratio (SUVR) was obtained using amyloid PET with 18 F-flutemetamol, and susceptibility in the brain regions was obtained using QSM. A multiple regression model to predict cortical SUVR was constructed based on susceptibilities in multiple brain regions, with the constraint that cortical SUVR and susceptibility were positively correlated. The discrimination performance of the Aβ-positive and Aβ-negative cohorts was evaluated based on the predicted SUVR using the area under the receiver operating characteristic curve (AUC) and Mann-Whitney U test.

RESULTS: The correlation coefficients between true and predicted SUVR were increased by incorporating the constraint, and the AUC to discriminate between the Aβ-positive and Aβ-negative cohorts reached to 0.79 (p < 0.01).

CONCLUSION: These preliminary results suggest that a QSM-based multiple regression model can predict amyloid PET positivity with fair accuracy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app