Add like
Add dislike
Add to saved papers

Exploring Trade-Offs in Spiking Neural Networks.

Neural Computation 2023 July 29
Spiking neural networks (SNNs) have emerged as a promising alternative to traditional deep neural networks for low-power computing. However, the effectiveness of SNNs is not solely determined by their performance but also by their energy consumption, prediction speed, and robustness to noise. The recent method Fast & Deep, along with others, achieves fast and energy-efficient computation by constraining neurons to fire at most once. Known as time-to-first-spike (TTFS), this constraint, however, restricts the capabilities of SNNs in many aspects. In this work, we explore the relationships of performance, energy consumption, speed, and stability when using this constraint. More precisely, we highlight the existence of trade-offs where performance and robustness are gained at the cost of sparsity and prediction latency. To improve these trade-offs, we propose a relaxed version of Fast & Deep that allows for multiple spikes per neuron. Our experiments show that relaxing the spike constraint provides higher performance while also benefiting from faster convergence, similar sparsity, comparable prediction latency, and better robustness to noise compared to TTFS SNNs. By highlighting the limitations of TTFS and demonstrating the advantages of unconstrained SNNs, we provide valuable insight for the development of effective learning strategies for neuromorphic computing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app