Add like
Add dislike
Add to saved papers

Development and external validation of a pretrained deep learning model for the prediction of non-accidental trauma.

Non-accidental trauma (NAT) is deadly and difficult to predict. Transformer models pretrained on large datasets have recently produced state of the art performance on diverse prediction tasks, but the optimal pretraining strategies for diagnostic predictions are not known. Here we report the development and external validation of Pretrained and Adapted BERT for Longitudinal Outcomes (PABLO), a transformer-based deep learning model with multitask clinical pretraining, to identify patients who will receive a diagnosis of NAT in the next year. We develop a clinical interface to visualize patient trajectories, model predictions, and individual risk factors. In two comprehensive statewide databases, approximately 1% of patients experience NAT within one year of prediction. PABLO predicts NAT events with area under the receiver operating characteristic curve (AUROC) of 0.844 (95% CI 0.838-0.851) in the California test set, and 0.849 (95% CI 0.846-0.851) on external validation in Florida, outperforming comparator models. Multitask pretraining significantly improves model performance. Attribution analysis shows substance use, psychiatric, and injury diagnoses, in the context of age and racial demographics, as influential predictors of NAT. As a clinical decision support system, PABLO can identify high-risk patients and patient-specific risk factors, which can be used to target secondary screening and preventive interventions at the point-of-care.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app