Add like
Add dislike
Add to saved papers

Impact of Cardiac Motion on coronary artery calcium scoring using a virtual non-iodine algorithm on photon-counting detector CT: a dynamic phantom study.

This study assessed the impact of cardiac motion and in-vessel attenuation on coronary artery calcium (CAC) scoring using virtual non-iodine (VNI) against virtual non-contrast (VNC) reconstructions on photon-counting detector CT. Two artificial vessels containing calcifications and different in-vessel attenuations (500, 800HU) were scanned without (static) and with cardiac motion (60, 80, 100 beats per minute [bpm]). Images were post-processed using a VNC and VNI algorithm at 70 keV and quantum iterative reconstruction (QIR) strength 2. Calcium mass, Agatston scores, cardiac motion susceptibility (CMS)-indices were compared to physical mass, static scores as well as between reconstructions, heart rates and in-vessel attenuations. VNI scores decreased with rising heart rate (p < 0.01) and showed less underestimation than VNC scores (p < 0.001). Only VNI scores were similar to the physical mass at static measurements, and to static scores at 60 bpm. Agatston scores using VNI were similar to static scores at 60 and 80 bpm. Standard deviation of CMS-indices was lower for VNI-based than for VNC-based CAC scoring. VNI scores were higher at 500 than 800HU (p < 0.001) and higher than VNC scores (p < 0.001) with VNI scores at 500 HU showing the lowest deviation from the physical reference. VNI-based CAC quantification is influenced by cardiac motion and in-vessel attenuation, but least when measuring Agatston scores, where it outperforms VNC-based CAC scoring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app