Add like
Add dislike
Add to saved papers

A Bayesian nonparametric analysis for zero-inflated multivariate count data with application to microbiome study.

High-throughput sequencing technology has enabled researchers to profile microbial communities from a variety of environments, but analysis of multivariate taxon count data remains challenging. We develop a Bayesian nonparametric (BNP) regression model with zero inflation to analyse multivariate count data from microbiome studies. A BNP approach flexibly models microbial associations with covariates, such as environmental factors and clinical characteristics. The model produces estimates for probability distributions which relate microbial diversity and differential abundance to covariates, and facilitates community comparisons beyond those provided by simple statistical tests. We compare the model to simpler models and popular alternatives in simulation studies, showing, in addition to these additional community-level insights, it yields superior parameter estimates and model fit in various settings. The model's utility is demonstrated by applying it to a chronic wound microbiome data set and a Human Microbiome Project data set, where it is used to compare microbial communities present in different environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app