Add like
Add dislike
Add to saved papers

Incomplete Reprogramming of DNA Replication Timing in Induced Pluripotent Stem Cells.

bioRxiv 2023 June 13
Induced pluripotent stem cells (iPSC) are a widely used cell system and a foundation for cell therapy. Differences in gene expression, DNA methylation, and chromatin conformation, which have the potential to affect differentiation capacity, have been identified between iPSCs and embryonic stem cells (ESCs). Less is known about whether DNA replication timing - a process linked to both genome regulation and genome stability - is efficiently reprogrammed to the embryonic state. To answer this, we profiled and compared genome-wide replication timing between ESCs, iPSCs, and cells reprogrammed by somatic cell nuclear transfer (NT-ESCs). While NT-ESCs replicated their DNA in a manner indistinguishable from ESCs, a subset of iPSCs exhibit delayed replication at heterochromatic regions containing genes downregulated in iPSC with incompletely reprogrammed DNA methylation. DNA replication delays were not the result of gene expression and DNA methylation aberrations and persisted after differentiating cells to neuronal precursors. Thus, DNA replication timing can be resistant to reprogramming and lead to undesirable phenotypes in iPSCs, establishing it as an important genomic feature to consider when evaluating iPSC lines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app