Add like
Add dislike
Add to saved papers

Modeling and analysis of novel COVID-19 outbreak under fractal-fractional derivative in Caputo sense with power-law: a case study of Pakistan.

In this paper, a five-compartment model is used to explore the dynamics of the COVID-19 pandemic, taking the vaccination campaign into account. The present model consists of five components that lead to a system of five ordinary differential equations. In this paper, we examined the disease from the perspective of a fractal fractional derivative in the Caputo sense with a power law type kernal. The model is also fitted with real data for Pakistan between June 1, 2020, and March 8, 2021. The fundamental mathematical characteristics of the model have been investigated thoroughly. We have calculated the equilibrium points and the reproduction number for the model and obtained the feasible region for the system. The existence and stability criteria of the model have been validated using the Banach fixed point theory and the Picard successive approximation technique. Furthermore, we have conducted stability analysis for both the disease-free and endemic equilibrium states. On the basis of sensitivity analysis and the dynamics of the threshold parameter, we have estimated the effectiveness of vaccination and identified potential control strategies for the disease using the proposed model outbreaks. The stability of the concerned solution in Ulam-Hyers and Ulam-Hyers-Rassias sense is also investigated. For the proposed problem, some results regarding basic reproduction numbers and stability analysis for various parameters are represented graphically. Matlab software is used for numerical illustrations. Graphical representations are given for different fractional orders and for various parametric values.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app