Add like
Add dislike
Add to saved papers

Prediction of the spatiotemporal evolution of vegetation cover in the Huainan mining area and quantitative analysis of driving factors.

The prediction of the spatiotemporal dynamic evolution of vegetation cover in the Huainan mining area and the quantitative evaluation of its driving factors are of great significance for protecting and restoring the environment in this area. This study uses the Landsat 5 TM and Landsat 8 OLI time-series data to estimate the vegetation cover and uses the transition matrix to analyze the spatiotemporal transfer of vegetation cover from 1989 to 2004, 2004 to 2021, and 2021 to 2030. In addition, a structural equation model (SEM) was established in this study to assess the driving factors of vegetation cover. The quantitative analysis and the cellular automata (CA)-Markov model were performed to predict the future vegetation cover in the Huainan mining area. The results are as follows: (1) In different periods, the vegetation cover types were mainly high cover types transferred to other vegetation cover types; (2) human activities are the key factors affecting the vegetation growth, while topographical factor is the most influential factor promoting the vegetation growth; (3) highly consistent CA-Markov and multi-criteria evaluation (MCE) predicted results of vegetation cover in 2030 compared to that in 2021. The proportion of bare soil and low cover types had increased significantly, mainly concentrated in the internal area of the mines. The prediction of the spatiotemporal evolution of vegetation cover in the Huainan mining area and the quantitative change in driving factors are of significant importance for the restoration of the environment in mining areas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app