Add like
Add dislike
Add to saved papers

SIRSi-vaccine dynamical model for the Covid-19 pandemic.

ISA Transactions 2023 May 17
Covid-19, caused by severe acute respiratory syndrome coronavirus 2, broke out as a pandemic during the beginning of 2020. The rapid spread of the disease prompted an unprecedented global response involving academic institutions, regulatory agencies, and industries. Vaccination and nonpharmaceutical interventions including social distancing have proven to be the most effective strategies to combat the pandemic. In this context, it is crucial to understand the dynamic behavior of the Covid-19 spread together with possible vaccination strategies. In this study, a susceptible-infected-removed-sick model with vaccination (SIRSi-vaccine) was proposed, accounting for the unreported yet infectious. The model considered the possibility of temporary immunity following infection or vaccination. Both situations contribute toward the spread of diseases. The transcritical bifurcation diagram of alternating and mutually exclusive stabilities for both disease-free and endemic equilibria were determined in the parameter space of vaccination rate and isolation index. The existing equilibrium conditions for both points were determined in terms of the epidemiological parameters of the model. The bifurcation diagram allowed us to estimate the maximum number of confirmed cases expected for each set of parameters. The model was fitted with data from São Paulo, the state capital of SP, Brazil, which describes the number of confirmed infected cases and the isolation index for the considered data window. Furthermore, simulation results demonstrate the possibility of periodic undamped oscillatory behavior of the susceptible population and the number of confirmed cases forced by the periodic small-amplitude oscillations in the isolation index. The main contributions of the proposed model are as follows: A minimum effort was required when vaccination was combined with social isolation, while additionally ensuring the existence of equilibrium points. The model could provide valuable information for policymakers, helping define disease prevention mitigation strategies that combine vaccination and non-pharmaceutical interventions, such as social distancing and the use of masks. In addition, the SIRSi-vaccine model facilitated the qualitative assessment of information regarding the unreported infected yet infectious cases, while considering temporary immunity, vaccination, and social isolation index.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app