Add like
Add dislike
Add to saved papers

Mock circulatory loop generated database for dynamic characterization of pressure-based cardiac output monitoring systems.

Pulse contour cardiac output monitoring systems allow real-time and continuous estimation of hemodynamic variables such as cardiac output (CO) and stroke volume variation (SVV) by analysis of arterial blood pressure waveforms. However, evaluating the performance of CO monitoring systems to measure the small variations in these variables sometimes used to guide fluid therapy is a challenge due to limitations in clinical reference methods. We developed a non-clinical database as a tool for assessing the dynamic attributes of pressure-based CO monitoring systems, including CO response time and CO and SVV resolutions. We developed a mock circulation loop (MCL) that can simulate rapid changes in different parameters, such as CO and SVV. The MCL was configured to simulate three different states (normovolemic, cardiogenic shock, and hyperdynamic) representing a range of flow and pressure conditions. For each state, we simulated stepwise changes in the MCL flow and collected datasets for characterizing pressure-based CO systems. Nine datasets were generated that contain hours of peripheral pressure, central flow and pressure waveforms. The MCL-generated database is provided open access as a tool for evaluating dynamic characteristics of pressure-based CO algorithms and systems in detecting variations in CO and SVV indices. In an example application of the database, a CO response time of 10 s, CO and SVV resolutions with lower and upper limits of (-9.1%, 8.4%) and (-5.0%, 3.8%), respectively, were determined for a pressure-based CO benchtop system. This tool will support a more comprehensive assessment of pressure-based CO monitoring systems and algorithms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app