Add like
Add dislike
Add to saved papers

Broadband transverse unidirectional scattering and large range nanoscale displacement measuring based on the interaction between a tightly focused azimuthally polarized beam and a silicon hollow nanostructure.

Optics Express 2023 May 9
We theoretically propose a broadband transverse unidirectional scattering scheme based on the interaction between a tightly focused azimuthally polarized beam (APB) and a silicon hollow nanostructure. When the nanostructure is located at a specific position in the focal plane of the APB, the transverse scattering fields can be decomposed into contributions from transverse components of the electric dipoles, longitudinal components of magnetic dipoles and magnetic quadrupole components. In order to satisfy the transverse Kerker conditions for these multipoles within a wide infrared spectrum, we design a novel nanostructure with hollow parallelepiped shape. Through numerical simulations and theoretical calculations, this scheme exhibits efficient transverse unidirectional scattering effects in the wavelength range of 1440 nm to 1820 nm (380 nm). In addition, by adjusting the position of the nanostructure on the x-axis, efficient nanoscale displacement sensing with large measuring ranges can be achieved. After analyses, the results prove that our research may have potential applications in the field of high-precision on-chip displacement sensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app