Add like
Add dislike
Add to saved papers

Mathematical Model of Synaptic Long-Term Potentiation as a Bistability in a Chain of Biochemical Reactions with a Positive Feedback.

Nitric oxide (NO) is involved in synaptic long-term potentiation (LTP) by multiple signaling pathways. Here, we show that LTP of synaptic transmission can be explained as a feature of signal transduction-bistable behavior in a chain of biochemical reactions with positive feedback, formed by diffusion of NO to the presynaptic site and facilitating the release of glutamate (Glu). The dynamics of Glu, calcium (Ca2+ ) and NO is described by a system of nonlinear reaction-diffusion equations with modified Michaelis-Menten (MM) kinetics. Numerical investigation reveals that the chain of biochemical reactions analyzed can exhibit a bistable behavior under physiological conditions when production of Glu is described by MM kinetics and decay of NO is modeled by means of two enzymatic pathways with different kinetic properties. Our finding extends understanding of the role of NO in LTP: a short high-intensity stimulus is "memorized" as a long-lasting elevation of NO concentration. The conclusions obtained by analysis of the chain of biochemical reactions describing LTP can be generalized to other chains of interactions or for creating the logical elements for biological computers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app