Add like
Add dislike
Add to saved papers

Water-film thickness imaging based on time-multiplexed near-infrared absorption with up to 500  Hz repetition rate.

Applied Optics 2023 April 21
We demonstrate high-repetition-rate imaging of the liquid-film thickness in the 50-1000 µm range resulting from impinging water droplets on a glass surface. The pixel-by-pixel ratio of line-of-sight absorption at two time-multiplexed near-infrared wavelengths at 1440 and 1353 nm was detected with a high-frame-rate InGaAs focal-plane array camera. Frame rates of 1 kHz and thus measurement rates of 500 Hz could be achieved, well suited to capture the fast dynamics of droplet impingement and film formation. The droplets were sprayed onto the glass surface using an atomizer. Suitable absorption wavelength bands for water droplet/film imaging were determined from Fourier-transform infrared (FTIR) spectra of pure water between 298 and 338 K. At 1440 nm, the water absorption is nearly temperature-independent, making the measurements robust against temperature fluctuations. Time-resolved imaging measurements capturing the dynamics of the water droplet impingement and evolution were successfully demonstrated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app