Add like
Add dislike
Add to saved papers

Membrane Potential-requiring Succinate Dehydrogenase Constitutes the Key to Propionate Oxidation and Is Unique to Syntrophic Propionate-oxidizing Bacteria.

Propionate oxidation in Pelotomaculum thermopropionicum is performed under a thermodynamic limit. The most energetically unfavorable reaction in the propionate oxidation pathway is succinate oxidation. Based on previous genomic and transcriptomic ana-lyses, succinate oxidation in P. thermopropionicum under propionate-oxidizing conditions is conducted by the membrane-bound forms of two succinate dehydrogenases (SDHs). We herein examined the activity of SDH, the mechanisms underlying the succinate oxidation reaction in P. thermopropionicum, and the importance of the protein sequences of related genes. SDH activity was highly localized to the membrane fraction. An ana-lysis of the soluble fraction revealed that fumarate reductase received electrons from NADH, suggesting the involvement of membrane-bound SDH in propionate oxidation. We utilized an uncoupler and inhibitors of adenosine triphosphate (ATP) synthase and membrane-bound SDH to investigate whether the membrane potential of P. thermopropionicum supports propionate oxidation alongside hydrogen production. These chemicals inhibited hydrogen production, indicating that membrane-bound SDH requires a membrane potential for succinate oxidation, and this membrane potential is maintained by ATP synthase. In addition, the phylogenetic distribution of the flavin adenine dinucleotide-binding subunit and conserved amino acid sequences of the cytochrome b subunit of SDHs in propionate-oxidizing bacteria suggests that membrane-bound SDHs possess specific conserved amino acid residues that are strongly associated with efficient succinate oxidation in syntrophic propionate-oxidizing bacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app