Add like
Add dislike
Add to saved papers

In Silico-Based Structural Evaluation to Categorize the Pathogenicity of Mutations Identified in the RAD Class of Proteins.

ACS Omega 2023 March 22
RAD genes, known as double-strand break repair proteins, play a major role in maintaining the genomic integrity of a cell by carrying out essential DNA repair functions via double-strand break repair pathways. Mutations in the RAD class of proteins show high susceptibility to breast and ovarian cancers; however, adequate research on the mutations identified in these genes has not been extensively reported for their deleterious effects. Changes in the folding pattern of RAD proteins play an important role in protein-protein interactions and also functions. Missense mutations identified from four cancer databases, cBioPortal, COSMIC, ClinVar, and gnomAD, cause aberrant conformations, which may lead to faulty DNA repair mechanisms. It is therefore necessary to evaluate the effects of pathogenic mutations of RAD proteins and their subsequent role in breast and ovarian cancers. In this study, we have used eight computational prediction servers to analyze pathogenic mutations and understand their effects on the protein structure and function. A total of 5122 missense mutations were identified from four different cancer databases, of which 1165 were predicted to be pathogenic using at least five pathogenicity prediction servers. These mutations were characterized as high-risk mutations based on their location in the conserved domains and subsequently subjected to structural stability characterization. The mutations included in the present study were selected from clinically relevant mutants in breast cancer pedigrees. Comparative folding patterns and intra-atomic interaction results showed alterations in the structural behavior of RAD proteins, specifically RAD51C triggered by mutations G125V and L138F and RAD51D triggered by mutations S207L and E233G.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app