Add like
Add dislike
Add to saved papers

Remdesivir-induced conduction abnormalities: A molecular model-based explanation.

Purpose: Remdesivir use in COVID-19 is associated with cardiac conduction abnormalities from unclear mechanisms. A proposed mechanism is the bioaccumulation of the intermediate metabolite GS-441524 resulting in exogenous activation of cardiac adenosine A1 due to the structural similarity between adenosine and GS-441524. The prolonged half-life of GS-441524 can result in sustained activation of adenosine A1 receptors. In this study, we used molecular modeling of adenosine, GS-441524 and the adenosine A1 receptor to assess the potential mechanistic association of the proposed mechanism. Methods: Adenosine and GS-441524 structures were acquired from the PubChem database. Ligand docking was carried out using UCSF Chimera. Models were chosen based on greatest binding affinity and minimum root mean square deviation. Figures of resulting structural models were prepared using UCSF Chimera or PyMOL 2.3.5. Results: By modeling the interaction between the A1 G protein complex and both adenosine and GS-441524, we found that the proposed mechanism of exogenous A1 receptor activation is feasible based on docking compatibility. Conclusion: The proposed mechanism of exogenous cardiac A1 receptor activation from bioaccumulation of GS-441524 as a cause of observed cardiac conduction abnormalities with the use of remdesivir in COVID-19 is viable. Further studies are needed to assess causality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app