Add like
Add dislike
Add to saved papers

Treatments of Porcine Nuclear Recipient Oocytes and Somatic Cell Nuclear Transfer-Generated Embryos with Various Reactive Oxygen Species Scavengers Lead to Improvements of Their Quality Parameters and Developmental Competences by Mitigating Oxidative Stress-Related Impacts.

This study investigated the antioxidant effects of β-cryptoxanthin (BCX), hesperetin (HES), and icariin (ICA), and their effects on in vitro maturation of porcine oocytes and subsequent embryonic development of somatic cell nuclear transfer (SCNT). Treatment with 1 μM BCX (BCX-1) increased the developmental rate of porcine oocytes more than treatment with 100 μM HES (HES-100) or 5 μM ICA (ICA-5). The glutathione level and mRNA expression of antioxidant genes ( NFE2L2 , SOD1 , and SOD2) were more increased in the BCX-1 group than in the HES-100 and ICA-5 groups, while the reactive oxygen species level was more decreased. Moreover, BCX improved the developmental capacity and quality of SCNT embryos. The total cell number, apoptotic cell rate, and development-related gene expression were modulated in the BCX-1 group to enhance embryonic development of SCNT. These results show that the antioxidant effects of BCX enhance in vitro maturation of porcine oocytes and subsequent embryonic development of SCNT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app