Add like
Add dislike
Add to saved papers

GCNA is a histone binding protein required for spermatogonial stem cell maintenance.

Recycling and de-novo deposition of histones during DNA replication is a critical challenge faced by eukaryotic cells and is coordinated by histone chaperones. Spermatogenesis is highly regulated sophisticated process necessitating not only histone modification but loading of testis specific histone variants. Here, we show that Germ Cell Nuclear Acidic protein (GCNA), a germ cell specific protein in adult mice, can bind histones and purified GCNA exhibits histone chaperone activity. GCNA associates with the DNA replication machinery and supports progression through S-phase in murine undifferentiated spermatogonia (USGs). Whilst GCNA is dispensable for embryonic germ cell development, it is required for the maintenance of the USG pool and for long-term production of sperm. Our work describes the role of a germ cell specific histone chaperone in USGs maintenance in mice. These findings provide a mechanistic basis for the male infertility observed in patients carrying GCNA mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app