Add like
Add dislike
Add to saved papers

Machine learning approaches to predict age from accelerometer records of physical activity at biobank scale.

PLOS Digit Health 2023 January
Physical activity improves quality of life and protects against age-related diseases. With age, physical activity tends to decrease, increasing vulnerability to disease in the elderly. In the following, we trained a neural network to predict age from 115,456 one week-long 100Hz wrist accelerometer recordings from the UK Biobank (mean absolute error = 3.7±0.2 years), using a variety of data structures to capture the complexity of real-world activity. We achieved this performance by preprocessing the raw frequency data as 2,271 scalar features, 113 time series, and four images. We defined accelerated aging for a participant as being predicted older than one's actual age and identified both genetic and environmental exposure factors associated with the new phenotype. We performed a genome wide association on the accelerated aging phenotypes to estimate its heritability (h_g2 = 12.3±0.9%) and identified ten single nucleotide polymorphisms in close proximity to genes in a histone and olfactory cluster on chromosome six (e.g HIST1H1C, OR5V1). Similarly, we identified biomarkers (e.g blood pressure), clinical phenotypes (e.g chest pain), diseases (e.g hypertension), environmental (e.g smoking), and socioeconomic (e.g income and education) variables associated with accelerated aging. Physical activity-derived biological age is a complex phenotype associated with both genetic and non-genetic factors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app