Add like
Add dislike
Add to saved papers

An Ultrasensitive Lateral Flow Immunoassay Based on Metal-Organic Framework-Decorated Polydopamine for Multiple Sulfonylureas Adulteration in Functional Foods.

Herein, an ultrasensitive lateral flow immunoassay (LFIA), based on metal-organic framework-decorated polydopamine (PCN-224@PDA) was first established to detect multiple sulfonylureas (SUs) in functional foods. The PCN-224@PDA was synthesized using the one-pot hydrothermal method and covalently coupled with SUs antibodies, and the coupling rate was up to 91.8%. The detection limits of the developed PCN-224@PDA-LFIA for multiple SUs in functional teas and capsules were 0.22-3.72 μg/kg and 0.40-3.71 μg/kg, and quantification limits were 0.75-8.19 μg/kg and 1.03-9.08 μg/kg, respectively. The analytical sensitivity was 128-fold higher than that of similar methods reported so far. The recovery rates ranged from 83.8 to 119.0%, with coefficients of variation of 7.6-14.4%. The parallel analysis of 20 real samples by LC-MS/MS confirmed the reliability of the proposed method. Therefore, our work offers novel, ultrasensitive, and rapid technical support for on-site monitoring of SUs in functional foods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app