Add like
Add dislike
Add to saved papers

Seasonal Shifts in Bacterial Community Structures in the Lateral Root of Sugar Beet Grown in an Andosol Field in Japan.

To investigate functional plant growth-promoting rhizobacteria in sugar beet, seasonal shifts in bacterial community structures in the lateral roots of sugar beet were examined using amplicon sequencing ana-lyses of the 16S rRNA gene. Shannon and Simpson indexes significantly increased between June and July, but did not significantly differ between July and subsequent months (August and September). A weighted UniFrac principal coordinate ana-lysis grouped bacterial samples into four clusters along with PC1 (43.8%), corresponding to the four sampling months in the order of sampling dates. Taxonomic ana-lyses revealed that bacterial diversity in the lateral roots was exclusively dominated by three phyla (Actinobacteria, Bacteroidetes, and Proteobacteria) in all samples examined. At the lower taxonomic levels, the dominant taxa were roughly classified into three groups. Therefore, the relative abundances of seven dominant genera (Janthinobacterium, Kribbella, Pedobacter, Rhodanobacter, Sphingobium, Sphingopyxis, and Streptomyces) were the highest in June and gradually decreased as sugar beet grew. The relative abundances of eight taxa (Bradyrhizobiaceae, Caulobacteraceae, Chitinophagaceae, Novosphingobium, Phyllobacteriaceae, Pseudomonas, Rhizobiaceae, and Sphingomonas) were mainly high in July and/or August. The relative abundances of six taxa (unclassified Comamonadaceae, Cytophagaceae, unclassified Gammaproteobacteria, Haliangiaceae, unclassified Myxococcales, and Sinobacteraceae) were the highest in September. Among the dominant taxa, 12 genera (Amycolatopsis, Bradyrhizobium, Caulobacter, Devosia, Flavobacterium, Janthinobacterium, Kribbella, Kutzneria, Pedobacter, Rhizobium, Rhodanobacter, and Steroidobacter) were considered to be candidate groups of plant growth-promoting bacteria based on their previously reported beneficial traits as biopesticides and/or biofertilizers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app