Add like
Add dislike
Add to saved papers

Hemocompatibility and hemodynamic comparison of two centrifugal LVADs: HVAD and HeartMate3.

Mechanical circulatory support using ventricular assist devices is a common technique for treating patients suffering from advanced heart failure. The latest generation of devices is characterized by centrifugal turbopumps which employ magnetic levitation bearings to ensure a gap clearance between moving and static parts. Despite the increasing use of these devices as a destination therapy, several long-term complications still exist regarding their hemocompatibility. The blood damage associated with different pump designs has been investigated profoundly in the literature, while the hemodynamic performance has been hardly considered. This work presents a novel comparison between the two main devices of the latest generation-HVAD and HM3-from both perspectives, hemodynamic performance and blood damage. Computational fluid dynamics simulations are performed to model the considered LVADs, and computational results are compared to experimental measurements of pressure head to validate the model. Enhanced performance and hemocompatibility are detected for HM3 owing to its design incorporating more conventional blades and larger gap clearances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app