Add like
Add dislike
Add to saved papers

A novel and simple naphthol azo dye chemosensor as a naked eye detection tool for highly selective, sensitive and accurate determination of thiourea in tap water, juices and fruit skins.

In the present study, a highly accurate and sensitive azo-dye-based colorimetric sensor based on Eriochrome Black T (EBT) was proposed to detect and determine thiourea (TU). TU is truly an important toxic and carcinogenic hazardous pollutant as approved by EPA and IARC. This chemosensor shows a distinct color change from blue to pink during interaction with TU in aqueous medium. So EBT is capable as an applied tool for naked eye detection of TU as its color change is easily observed without any means. The sensing mechanism was also investigated using UV-vis absorption and FT-IR spectra. The linear range and the detection limit of TU sensing were respectively 0.15-18.5 μmol/L and 0.02 μmol/L. In addition, the relative standard deviation (RSD) based on ten repetitions calculated for two different TU concentrations 4.4 and 9.0 μmol/L were 2.3 % and 1.8 %, respectively. Besides its useful application as a naked eye detection tool, the advantages of the developed method include simplicity, elimination of tedious separation and pre-concentration steps, executable in neutral aqueous media, low costs, high accuracy, linear response for wide range of concentrations, low detection limit, high sensitivity, compatibility, and excellent selectivity. The concentration of TU in tap water, fruit juices or fruit skin samples can be visually detected and determined easily using this method. The results showed that EBT is an ideal colorimetric chemosensor for TU, which has been reported for the first time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app