Add like
Add dislike
Add to saved papers

Enhanced genomic stability of new miRNA-regulated oncolytic coxsackievirus B3.

Genetic modification of coxsackievirus B3 (CVB3) by inserting target sequences (TS) of tumor-suppressive and/or organ-selective microRNAs (miRs) into viral genome can efficiently eliminate viral pathogenesis without significant impacts on its oncolytic activity. Nonetheless, reversion mutants (loss of miR-TS inserts) were identified as early as day 35 post-injection in ∼40% immunodeficient mice. To improve the stability, here we re-engineered CVB3 by (1) replacing the same length of viral genome at the non-coding region with TS of cardiac-selective miR-1/miR-133 and pancreas-enriched miR-216/miR-375 or (2) inserting the above miR-TS into the coding region (i.e., P1 region) of viral genome. Serial passaging of these newly established miR-CVB3s in cultured cells for 20 rounds demonstrated significantly improved stability compared with the first-generation miR-CVB3 with 5'UTR insertion of miR-TS. The safety and stability of these new miR-CVB3s was verified in immunocompetent mice. Moreover, we showed that these new viruses retained the ability to suppress lung tumor growth in a xenograft mouse model. Finally, we observed that miR-CVB3 with insertion in P1 region was more stable than miR-CVB3 with preserved length of the 5'UTR, whereas the latter displayed significantly higher oncolytic activity. Overall, we presented here valid strategies to enhance the genomic stability of miR-CVB3 for virotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app