Add like
Add dislike
Add to saved papers

Chiral Majorana Fermions in two dimensional square lattice antiferromagnet with proximity-induced superconductivity.

Proximity-induced superconductivity in a two-dimensional square-lattice antiferromagnet with spin-orbit coupling and Combination of proximity-induced superconductivity and ferromagnetic exchange field in a two-dimensional square-lattice antiferromagnet with spin-orbit coupling and nonsymmorphic symmetry can induce a topological superconductor phase with chiral Majorana edge states. The lattice model of the Bogoliubov-de Gennes (BdG) Hamiltonian was applied to study the phase diagram of bulks and chiral Majorana edge states in nanoribbons. By numerically studying the phase diagram, we found that the non-uniformity of either the superconducting pairing parameters or the exchange field at the two sublattices is necessary to induce a topological superconductor phase with chiral Majorana edge states. The BdG Chern number of certain topological superconductor phases is $\pm1$ or $\pm3$, such that the corresponding nanoribbons have one or three pairs of chiral Majorana edge states, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app