Add like
Add dislike
Add to saved papers

Preparation, Structural Characterization of Anti-Cancer Drugs-Mediated Self-Assembly from the Pluronic Copolymers through Synchrotron SAXS Investigation.

Materials 2022 August 6
Chemotherapy drugs are mainly administered via intravenous injection or oral administration in a very a high dosage. If there is a targeted drug vehicle which can be deployed on the tumor, the medical treatment is specific and precise. Binary mixing of biocompatible Pluronic® F127 and Pluronic® L121 was used in this study for a drug carrier of pluronic biomedical hydrogels (PBHs). Based on the same PBH ingredients, the addition of fluorouracil (5-FU) was separated in three ways when it was incorporated with pluronics: F127-L121-(5-FU), F127-(5-FU), and L121-(5-FU). Small angle X-ray scattering experiments were performed to uncover the self-assembled structures of the PBHs. Meanwhile, the expected micelle and lamellar structural changes affected by the distribution of 5-FU were discussed with respect to the corresponding drug release monitoring. PBH-all with the mixing method of F127-L121-(5-FU) has the fastest drug release rate owing to the undulated amphiphilic boundary. In contrast, PBH-2 with the mixing method of L121-(5-FU) has a prolonged drug release rate at 67% for one month of the continuous drug release experiment because the flat lamellar amphiphilic boundary of PBH-2 drags the migration of 5-FU from the hydrophobic core. Therefore, the PBHs developed in the study possess great potential for targeted delivery and successfully served as a microenvironment model to elucidate the diffusion pathway of 5-FU.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app