Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Gram-Scale Asymmetric Synthesis of Fluorinated Amino Acids Using a Chiral Nickel(II) Complex.

Fluorinated amino acids play an important role in the field of peptide and protein engineering. Although numerous syntheses have been published in recent decades, strategies that allow routine access to fluorinated amino acids on a gram-scale have been poorly described. Furthermore, the described pathways that gain fluorinated amino acids are based on different synthetic strategies, making a uniform approach that uses similar starting materials highly beneficial. Chiral Ni(II) complexes were introduced as powerful tools in the synthesis of noncanonical amino acids. In this work, we present a strategy for the synthesis of a diverse range of fluorinated amino acids based on the corresponding Ni(II) complex from which the products can be obtained in enantiopure form (99% ee) on a gram-scale. In addition, we describe an optimized procedure for the synthesis of alkyl iodide building blocks that are required for the alkylation reactions with the corresponding Ni(II) complex. Finally, we characterized the synthesized fluorinated amino acids with regard to their hydrophobicity and α-helix propensity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app