Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The effect of substance P and its common in vivo-formed metabolites on MRGPRX2 and human mast cell activation.

The tachykinin neuropeptide substance P (SP) is the canonical agonist peptide for the neurokinin 1 receptor (NK1 R). More recently, it has also been shown to activate the Mas-related G protein-coupled receptor X2 (MRGPRX2) receptor on mast cells (MCs), triggering degranulation and release of inflammatory mediators. SP undergoes rapid C-terminal truncation in vivo by a number of proteases to generate the metabolites SP(1-9)-COOH and in particular SP(1-7)-COOH. While the C terminus of SP is critical for NK1 R activation, studies have shown that the peptide polycationic N terminus is key for MRGPRX2 and mast cell activation. The study thus aimed to determine if the C-terminally truncated metabolites of SP, SP(1-9)-COOH, and SP(1-7)-COOH retained stimulatory activity at MRGPRX2. SP, SP(1-9)-COOH, and SP(1-7)-COOH were synthesized and tested on HEK293 cells expressing NK1 R or MRGPRX2, and LAD2 human mast cells, to determine the activity of SP and its metabolites in Ca2+ mobilization, degranulation, and cytokine assays. As expected from prior studies, both C-terminally truncated SP metabolites had essentially no activity at NK1 R, even at very high concentrations. In contrast, the in vivo metabolite of SP, SP(1-9)-COOH retained ability to activate MRGPRX2 across all parameters tested, albeit with reduced potency compared to intact SP. SP(1-7)-COOH did not produce any significant MRGRPX2 activation. Our results suggest that the SP metabolite, SP(1-9)-COOH, may play a regulatory role through the activation of MRGPRX2. However, given the relatively low potency of both SP and SP(1-9)-COOH at MRGPRX2, additional work is needed to better understand the biological importance of this expanded SP/MRGPRX2 pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app