Add like
Add dislike
Add to saved papers

Dynamic Alterations of Metabolites Revealed the Vascularization Progression of Bioengineered Liver.

Vascularization is a critical but challenging process in developing functional bioengineered liver with the decellularized liver scaffolds (DLSs), and the process is accompanied by cell-specific metabolic alterations. To elucidate the dynamic alterations of metabolites during vascularization, rat DLSs were vascularized with human umbilical vein endothelial cells, and a liquid chromatography mass spectrometry-based metabolomics was performed on culture supernatants collected at 0, 1, 3, 7, 14 and 21 days. Overall, 1698 peak pairs or metabolites were detected in the culture supernatants, with 309 metabolites being positively identified. The orthogonal partial least-squares discriminant analysis and functional enrichment analysis revealed three phases that could be clearly discriminated, including phase D1 (cell proliferation and migration), phase D3D7 (vascular lumen formation), and phase D14D21 (functional endothelial barrier formation). Seventy-two common differentially abundant metabolites of known identity were detected in these three phases when compared to day 0. Of these metabolites, a high level of beta-Alanine indicated a better degree of vascularization, and 14 days of in-vitro dynamic culture is required to develop a functionalized vascular structure. These results enriched our understanding of the metabolic mechanism of DLS vascularization, and indicated that beta-Alanine could function as a potential predictor of the patency of vascularized bioengineered livers. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app