Add like
Add dislike
Add to saved papers

Moth wings as sound absorber metasurface.

In noise control applications, a perfect metasurface absorber would have the desirable traits of not only mitigating unwanted sound, but also being much thinner than the wavelengths of interest. Such deep-subwavelength performance is difficult to achieve technologically, yet moth wings, as natural metamaterials, offer functionality as efficient sound absorbers through the action of the numerous resonant scales that decorate their wing membrane. Here, we quantify the potential for moth wings to act as a sound-absorbing metasurface coating for acoustically reflective substrates. Moth wings were found to be efficient sound absorbers, reducing reflection from an acoustically hard surface by up to 87% at the lowest frequency tested (20 kHz), despite a thickness to wavelength ratio of up to 1/50. Remarkably, after the removal of the scales from the dorsal surface the wing's orientation on the surface changed its absorptive performance: absorption remains high when the bald wing membrane faces the sound but breaks down almost completely in the reverse orientation. Numerical simulations confirm the strong influence of the air gap below the wing membrane but only when it is adorned with scales. The finding that moth wings act as deep-subwavelength sound-absorbing metasurfaces opens the door to bioinspired, high-performance sound mitigation solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app